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Let Q(x) be a polynomial with real coefficients and Wp(Q(D)) be the periodic
Sobolev class defined by Q(D), D = d/dl. We get the exact values of Kolmogorov,
Gel'fand, and linear 2n-widths of WpIQ(D)) in L p for pE(I, 00) and n>N(Q),
where N(Q) is a constant dependent on Q. • Igg3 Academic Press. Inc

I. INTRODUCTION

Let Q(x) be a polynomial with real coefficients and the Sobolev class
Wl Q(D)). be the class of c~ntinuous 2n: -periodic functions f(x) for ~hich

f' egQ - II IS absolutely contmous and IIQ(D) fll p:( I, where deg Q IS the
degree of Q, D = dldt, and Hlp is the usual Lp[O,2n:J-norm. Denote by
d,,(p, q), d"(p, q), b,,(p, q), and h,,(p, q) the Kolmogorov, Gel'fand, linear,
and Bernstein n-widths of Wp(Q(D)) in L q[O,2n:], respectively. When
Q(x) has only real zeros, the quantities s,,(p, q) have long been investigated
by many authors (cr. [1~3, 12, 14]), where s" denotes any of the four sym­
bols d", d", b", and h". In the case where Q(x) has complex zeros, the
Bernoulli function

(1.1 )i=j=1,I eimx

G(x)=- L --
2n: Qliml,.O Q(im)'

corresponding to Q(D) does not satisfy the property of cyclic variation­
diminishing. Therefore the study of s,,(p, q) becomes complicated. This
question has been discussed in several papers up to now (cr. [4, 5, 9~11,
16]). In this paper, we obtain the exact values of d 2,,(p, p), d 2n(p, p), and
b2,,( p, p) for p E ( I,x ) and n > N( Q), where N( Q) is a constant determined
simply by Q.

Similar results about n-widths of this paper have been proved by Pinkus
[ 13] for nonperiodic Sobolev classes. By discretization, [13] proves, for
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2N-WIDTHS OF A PERIODIC SOBOLEV CLASS 9

p = q, the existence of the function and the eigenvalue satisfying the critical
point equation [13, Thm. 2.1]. This is essential to the estimations of
n -widths. The proof of Theorem 2.1 in [13] is complicated and does not
adapt to the periodic case. We prove, by a variational condition, for
p, q E (1, Xi), the existence of function and eigenvalue satisfying the critical
point equation. Moreover, the expression for the eigenvalue has been given.
Our method is different from that of [I] as well.

Throughout the paper G is given by (1.1).

2. PRELIMINARY FACTS

Set Q(x) = n;~ I (x-i.;) nj~QII [(x-ay+b}J, where r+211(Q) = deg Q,
i. j , a; ER, and b j > O. Denote by v( Q) the maximum of the b j, j = I, ... , 11( Q).
We define

E(G) = span{ cos mx, sin mx IQ(im) = O},

and denote by E~(G) the orthogonal complement of E(G) in Lp[O, 2n].
It is well known (cf. [9, p. 1360J) that/E Wp(Q(D)) if and only if/may

be represented as

/(x) = P(x) + (G '" h)(x),

where PE E(G), h E E~(G), h = Q(D) / a.e., and

f
21r

(G",h)(x)= G(x-t)h(t)dt.
o

Let / be a 2n-periodic function. Denote by Z(f) the number of zeros of
/ on a period, counting multiplicities, and by Z,(f) the number of zeros
of / on a period, counting multiplicities up to s. By dis(f) we denote the
maximum distance between consecutive zeros off, in which a zero interval
is regarded as a zero point.

If v( Q) =0, i.e., Q(x) has only real zeros, all the results of this paper were
established in [2]. So we assume v(Q»O.

LEMMA 2.1 [9, pp. 1357, 1360]. Ifdis(f)<n/(211(Q)-I)v(Q), then

(I) Zm(f) ~ Zm-degQ(Q(D) f),fE em, m ~ deg Q;

(2) S,.(f) ~ Sc(Q(D) f), for /(x) E Wp(Q(D)), y,'here S,(f) is the
number of sign changes of periodic / (cf [12, p. 60J).

Let T={x;}7'~I~[O,2n).lfxl< ... <xm , we set

d(T) = max (Xi+ I - Xi),
1 ~i~m
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The G-spline subspace X( T), with simple knots
functions

is the class of

In

F(x)=P(x)+ L c;G(x-x;),
i= 1

PE E(G),
In

L c;e5(x-x,)EE~(G),
i= I

where e5(x) is 2n-periodic Dirac function.
In what follows we need to smooth functions. This is done by means of

convoluting f with

<,b".(x)=~ f exp (- (Xfikn)2), ~ > O.
v 2n ~ k ~ -x 2 ~

Let G be given in (1.1). We set G".=<,b".*G and call X(T,~):=

{<,bo * FI FE X( T)} the G".-spline subspace with simple knots at T.
It is easy to see that s E X( T, ~) if and only jf s has the representation

s(x)=P(X)+L7'~,c;G".(x-x;),where P(x) and c;'s satisfy the same
conditions as in the definition of X( T).

LEMMA 2.2 [6, p.457]. (I) For any 2n-periodicfunction gEL, [0, 2n]
we have

Z(<,b". * g) ~ Sc(g)·

(2) If g is continuous with period 2n, then

lim 11<,b".*g-gllc=O.
(1----+0+

LEMMA 2.3 [9, Lemma 3.4]. Let m > O. If a nontrivial FE X( T, ~)

satisfies dis(F) < n/(2p.(Q) - 1) v(Q), then

Z(F) ~ card T.

LEMMA 2.4. Let card T= 2m + 1 and FE X(T,~) he nontrivial. If F
vanishes on T'= {Yi};:"t;; [0,2n) with d(T' )<n/(2p.(Q)-I)v(Q), then
SAF) = 2m and F changes sign at the J'j, j = 1,2, ... , 2m.

Proof We need only to prove that for any j E { 1, ..., 2m}, Y , is a simple
zero of F and that F has no zero except {Yi };:".

By Lemma 2.3, F has no interval zero and Z3(F) ~ 2m + 1. Therefore,
2m ~ Z3(F) ~ 2m + 1. The proof will be complete if Z3(F) = 2m. Assume to
the contrary that Z3(F) = 2m +1. Then there are two cases as follows.

(I) There exists a kE{I, ...,2m} such that O=F(yd=F'(Yk)'=
F"(Yd and 0 = F(Yi)'= F'(Yi) for jE {I, ... , 2m }/{k}. Therefore F has no
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zero except T'. From these it follows that F only changes sign at T'I {Yk}
and thus that SAF) = 2m - 1.

(2) For any YjET', O=F(Yj)#£'(Yj)' Then there exists a
X oE [0, 2n )/T' such that 0 = F(xo) # £'(xo). Therefore, SelF) = 2m + 1.

In all cases SelF) is an odd number. This contradicts the fact that SAF)
is even. Therefore the proof is complete.

Remark. Given Q, we call Q*(D) = Q( -D) the conjugate operator of
Q(D). Obviously the Bernoulli function corresponding to Q*(D) is
G*(x) = G( -x). Therefore, E(G*) = E(G), Jl(Q*) = Jl(Q) and v(Q*) = v(Q).
Any result established for Wp(Q(D» has its analogue for Wp(Q*(D).
For example, let f(x) = P(x) + (G* * h)(x) E Wp(Q*(D) with dis(f) <
n/(2Jl(Q) - 1) v(Q), then Se(f) ~ SAh).

We introduce for convenience the following notation:

M(X 1
...

Xm)
Yl ... Ym

0 0 g,CJi, ) g,Cvm)

0 0 g..(y, ) g,(Ym)

g,(x, ) g,.(x, ) G(x, - YIl G(x, - Ym) ,

g,(xm) g..(xm) G(xm-y,) G(xm- Ym)

where g I> ... , g ,. is a basis of E( G). The determinant will be denoted by
Ma(~: . ~::) if G is replaced by Ga.

3. ESTIMATION OF 0211(P, q) (1 < q ~ P < (0) FROM ABOVE

For p,qE(I,oo), n=I,2, ..., we consider the following extremal
problems:

where D II , p is the class of functions h(x) such that Ilhllp ~ 1 and

h(x)~O,

h (X+~) = -h(x),

XE [o,~).

(3.1 a)

(3.tb)
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Obviously, D",p£El-(G) for n>v(Q). We will denote XII(p, q, G) by All if
no confusion arises.

LEMMA 3.1. )," > °for n> v(Q).

~ Proof If )'11 = °for some n > v( Q), we can choose a hE DII. p such that
h(x) = c > °on [0, n/n). Therefore G * h = 0, By differentiating, we get

211- I (kn)L (- 1 )k G x - - = 0,
k=O n

which contradicts the fact that dim X( T,,) = card Til = 2n, where T" =

{kn/n }Z"~-Ol. The proof is complete.

THEOREM 3.1. For n> (21l(Q) - I) v(Q) and 1 < p, q < 00, there exists a
unique continuous function hll E DII. p such that

(I) IIG * hllll q = All := AII(p, q, G) = A" Ilhllll p ;

(2) Hit G(x- y) I(G * hll)(xW I sgn[(G * hll)(x)] dx = ).;, Ih"CYW- I

sgn[hll(y)], \:lyE [0, 2n];

(3) sgn(G * h,,)(x) = I: sgn sin n(x - 13), x E [0, 2n), where 13 E [0, nln)
fixed;

(4) Ihll(x W - 1sgn h,,(x) has exactly 2n zeros {kn/n n:-01£ [0, 2n),
all of ~vhich are simple.

Proof Our proof follows the same lines as that of Theorem 2.1 found
in [2]. But the method needs some improvement. If a continuous function
h"ED".p satisfies (I) and (2), in view of Lemma 2.1, dis(h,,)~n/n,

dis(G*h,,)~n/n, we can prove (3), (4), and the unicity of hll by
applying the same methods as that found in [13] (Proposition 2.8 and
Proposition 2.3, respectively) and Rolle's Theorem (cf. [9, Prop. 1.3]).
Thus we only prove (I) and (2). By using the weak * compactness of L p ,

we can prove that there exists an hIlED".p such that IIG*h"lIq=/.,,=
All Ilh"ll p . (The procedure of the proof is the same as in [7]). For an
arbitrary hE D". p' t ~ 0, set

From the inequality g(t) ~ g(O) it follows that g'(O+) ~ 0, i.e.,

fit (G * h)(x) j(G * hll )(X)!4- 1sgn[(G * h,,)(x)] dx
o

- A;' (It h(y) IhnCvW I sgn[hll(y)] dy ~ 0.
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Substituting J~n G(x - y) h( y) dy for (G * h)(x), and changing the order of
integration, we get

f: n

h(y) {(' G(x - y) I(G * h,,)(x)l
q

- 1 sgn[(G * h,,)(x)] dx

-).~lh,,(yW 'Sgnh,,(Y)}dY~O. (3.2)

Denote the function in { ... } by E,,(y). Then E I1(y) satisfies (3.la). There­
fore h(y) E,,(y) is a function with period nln. Thus (3.2) is equivalent to

for all hE D". p.

From the arbitrariness of hE D". p' we get

EI1(y) ~ 0 (3.3 )

En(y)=O,

If we speciafically take h = h", then g'(O + ) = 0, i.e.,

f
n/ll

o E,,(y) hnev) dy = O.

Since En(y) hn(y) ~O, a.e. yE [0, nln], we get

a.e. YEF+ :={YIYE[O,~Jh,,(y»O}.

Write

f
2n

Hn(y)= 0 G(x- y) I(G * h,,)(xW- ' sgn[(G * h,,)(x)] dx.

(3.4 )

Then Hn(y) satisfies (3.la). So dis(HI1)~nln<nl(2f1(Q)-I)v(Q). It IS

easy to prove that

I(G * h,,)(x)lq-1 sgn[(G * h,,)(x)] E E~(G*) = E~(G).

From Lemma 2.1 and the remark in Section 2, we obtain

Since dis(G*h,,)~nln, hI1EE~(G), we have Sc(G*hn)~SAhn)=2n. It
follows that SAH,,) = 2n. We claim that the following are equivalent:
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(i) H,,(y)~O, VyE [0, n/n],

(ii) E,,(y)=O, a.e. yE [0, n/n].

In fact, suppose that (i) holds. Set Fo = {YIYE[O,n/n],h,,(y)=O}. From
(3.3), (i) and the equality

H,,(y) = E,,(y) + A;' \h,,(y)iP- I sgn h,,(y), (3.5 )

it follows that O:%H,,(y)=E,,(y):%O, a.e. yEFo. Hence H,,(y)=E,,(y)=O
a.e. y E Fo. From this and (3.4), we get (ii).

Conversely, assume (ii) holds. If (i) is false, then by the continuity
of H,,( y), there exists a nondegenerate interval Is [0, n/n] such that
H,,(y) <0, VyEl. From (3.4) and (3.5), it follows that h,,(y) =0, a.e. YEI.
Therefore, again by (3.5), we get E,,(y)=H,,(y)<O, a.e. yEl. This
contradicts (ii). So we have proved the equivalence of (i) and (ii).

Now we are going to prove (i). We again use the method of proof by
contradiction. Suppose that (i) is false. We may assume, without loss of
generality, there exists IX E (0, n/n) such that

H,,(y)~O for all y E [0, :x);

for all V E [r.x ~).
" 'n'

and any of the inequalities can't become equality for all y. From (3.4)
and (3.5) it follows that h,,( y) = °a.e. y E [IX, n/n]. Let's so modify the
definition of h,,(y) that it equals to zero for all yE [:x, n/n]. Put h,;(y)=
h,,(y - n/n + IX), E,,*(y) = E,,(y - n/n +:x) and H,,*(y} = H,,(y - n/n + :x). It's
obvious that h,; ED". p' and IIG * h,;11 = },II' We can make the same argu­
ment for h:, E,~ and H,~ as we have done for h", E", and H". Therefore
the following are also equivalent:

(i)* H,~(y)~O, yE [0, n/n),

(ii)* E"*(y)=O a.e. yE [0, n/n).

Obviously, H:(y)~O for yE[O,n/n] (notice that SAH,,*)=2n, and
H,,( y) ~ 0 for y E [IX - (n/n), IX]).

Therefore E,,*(y) =0 a.e. yE [0, n/n], which entails the validity of (i)*
and (ii)*. Since both E,,(x) and E,~(x) satisfy (3.1a), we have proved the
validity of (ii) by the relation between E,,(x) and £,,*(x). Consequently, (2)
holds for almost all yE [0, 2n]. Let us modify the definition of h,,(x) in
some zero-measure set, such that equality (2) holds everywhere. So h" is
continuous. The proof is complete.
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Substituting Ga=<Pa*G for G we define ).n.a=}.n(p,q,Ga). For Ga,
Theorem 3.1 holds as well. Denote by hn•n the unique function satisfying
Theorem 3.1 (corresponding to Gn)'

LEMMA 3.2. Forn>(2p(Q)-I)v(Q),

(l) limn ~ o· }'n.n = )'n'

(2) There exists a sequence of positive numbers {a k }:~ I' I'.'hich
converges to zero, and the corresponding sequence of continuous functions
{hn.uk} t~ I converges uniformly to hn, where hn is given in Theorem 3.1.

Proof Since /I<Pa * hn.n/l p ~ /ltPn/il ./lhn.all p ~ I, SAtPa * hn.a) = 2n and
(<pa*hn.a)(x+(rr/n»)= -(tPn*hn.a)(x), there exists an Cn= +1 or -I, a
(Xn E [0, rr/n) such that

Therefore,

On the other hand, )'n,a ~ IIGn* hnll q = /I<Pa * (G * hn)ll q .....d n (a -+ 0+). This
proves (1 ).

If we put

then

is a bounded and equi-continuous subset of C[0,2rr]. Now (2) follows
from (I) of Theorem 3.1 and }.n. a -+ )'n i= O. The proof is complete.

Denote by X 2n and X 2n.a, respectively, the subspaces of the splines
defined by G and Gn with the simple knots {irr/n} 7:0I.

THEOREM 3.2. Assume {3n is the unique zero of Ga * hn.nE [0, rr/n). For
n> (2p(Q) - 1) v(Q),

(I) for any fa = P + Gn* h, PE E(G), hE El-(G), there exists an unique
S2n.Afn)=S2n.a(fa,x)EX2n.n, which interpolatesfn at {{3n+(irr/n)}7:'o ' ;

640751-2



16 CHEN AND ZHANG

(2) falx) - S211,,,(/,,' x) = gn M,,(x, y) dy:= Mh, where

(f3
f3 (2n-l)n )",,+ x_ n I

M"(x,y)=M,, (2n-l)n L1
o yn '

(

p" ", p,,+(2n-l)n)

A~M" ° (2n~l~n (#0);

(3) there exists [;E {-I, I} such that

M,,(x, y) = [; sgn sin n(x - P,,) IM,,(x, y)1 sgn sin ny.

Proof We first prove the unique existence of the interpolation spline.
Equivalently, we prove that if S,,(x) = P(x) + L7:~ I cjG,,(x - (jn/n)) E

X 2n" satisfies

i=O, 1, ,,,, 2n-l, (3.6 )

then Sa == O.
In fact, if S" satisfies (3.6), and S" ~ 0, then there is a constant c, such

that G" * hn."-cS,, has (2n+ 1) distinct zeros. Therefore, dis(G" * hn.a-cS,,)
~ n/n, and for any positive integer m;" 2n + 1, Zm(G" * hn,,,(') - cS,,('));"
2n + 1. By Lemma 2.1 (1) and Lemma 2.2, we have that

On the other hand, for sufficiently small T > 0, we define a 2n-periodic
function as follows:

Ixl ~T;

T <x< 2n - T.
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The last inequality follows from the fact that hn." is continuous and
S)h n.,,) = 2n. This implies a contradiction. So we have proved that (1)
holds and therefore L1 #0. By directly computing n" MAx, y) h(y) dy, we
obtain

where S"EX2n." and f"({3,, + (inln))=sA{3,,+(inln)), i=0,1, ...,2n-1.
Thus from the unicity of interpolation, (2) holds.

In what follows, we prove (3). Expanding M" by the last row we obtain
that when y E [0, 2n)\ {inln }~:0I, M" E X( {inln }~:0I U {y}, a) and M" ~°
(since the coefficient of G,,(x- y) is not zero). By Lemma 2.4, when
y E ((iln) n, ((i + 1)ln) n), M ,,(-, y) changes signs just at {{3" - (inln)}~:0 1

.

Applying the same argument as above, it follows from the remark of
Section 2 that when x E ({3" + (i/n) n, {3" + ((i + 1)/n) n), M ,,(x, .) changes
signs just at {inln}~:(; I. This completes the proof of (3).

THEOREM 3.3. Let n> (2J.l(Q) - 1) v(Q), (3 and hn be given in Theorem
3.1. Then, for any fE Wp(Q(D)), there exists a unique S2n(f)EX2n which
interpolates f at {(3 + (inln))~:0 I, and

1<q ~ p < 00.

Proof The procedure of the proof is similar to that of Proposition 2.7
in [13] or Theorem 2.2 in [2]. First, by Theorem 3.2, we can prove
Ilf"-S2n(f,,)llq~A.n.,,, for anYf,,=P+G,,*h, where PEE(G), hEEl-(G),
Ilhllp ~ 1 and 1 < q ~ p < 00. Second, by Lemma 3.2, we obtain a
S2n(f)EX2n which interpolates f at {(3+(inln)}~:(;1 and such that
Ilf -S2n(f)llq~A.n for any IE Wp(Q(D)). We omit the details. The unique­
ness of such S2n follows from the existence of that and dim X 2n = 2n.
Take f=G*h n, then S2n(G*h n)=0 and IIG*hn-S2n(G*hn)llq=A.n'
This proves the theorem.
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By Theorem 3.3, it follows that, for n>(2j1(Q)-I)v(Q) and l<q::::;
p < ex, b2n(p, q)::::; An'

THEOREM 3.4. Suppose n> (2j1( Q) - 1) v( Q) and 1 < q::::; p < ex,. Then

E( WI'(Q(D)), X 2n )q := sup inf lif - Sll q = i.n(p, q, G).
lE WpIQ(IJII SE X2.

Proof Since IG * hnl q - I sgn( G * hn) satisfies (3.1 ), then for n>
(2j1(Q)-1)v(Q) and any P(x)EE(G) we obtain

f
2rr I

P(x) I(G * hn)(xW sgn[(G * hn)(x)] dx=O.
o

By Theorem 3.1, we have

Therefore zero is the best approximant from X 2n to G * hn in L q . This
means that

The converse inequality is obtained by Theorem 3.3. The proof is complete.

4. THE MAIN RESULTS

THEOREM 4.1. Assumen>N(Q):=3v(Q)(2j1(Q)-I). ThenforpE(I, ex)

Moreover,

(1) X 2n is optima/for d2n(p, p).

(2) L2n:= {IE Wp(Q(D))\f(injn) =0, i=O, 1, ... , 2n-l} is optimal
for d 2n(p, p).

(3) S2n is an optimal operator of rank-2n for b2n(p, pl.

In the proof of Theorem 4.1, we will use the following. Suppose {J and hn

are given as in Theorem 3.1. Define 2n-periodic functions as follows.



2N -WIDTHS OF A PERIODIC SOBOLEV CLASS 19

XE[p, p+~);

X E [13, 13 + 2n) \ [13, 13 + ~) ;
\ n

[
i i+ I )

X E ~ n, -n- n ;

\[
i i + 1 )XE [0, 2n) ~ n, -n-n .

j = 0, 1, ..., 2n - 1. Put

LEMMA 4.1. Suppose n>N(Q) and 1 < p~q< 00. Then lor any P(X)E
E( G) and I EM2n' the inequality

holds. Here Llk=[p+(kn/n),p+((k+l)n/n»), and 11·11, denote the•/q -norm in R 2n.

Proof We first notice the fact that ifI = L~:o I aJE M 2n , then 1I/II p =

(2n) -lip II (a;);:0111,p' Consider the following extremal problem:

J1 := min {II/II; I·II(L. CPn (x - ~) (P(x) + (G * I)(x) dX) :'~OIII/.1

PEE(G),/EM2n \{0}}. (4.2)

Obviously, the minimum ~s attai~ed at some PE E(G), ]:= L;:o I aJiE
M2n' We can normalize P and I so that lajl ~ I, i=O, 1, ..., 2n-l, and
am = ( _I)m for some m. Since (P,]) is a critical point for (4.2), it must
satisfy the following conditions:

2n-l/ (k) ,q~~l (k)L f CPn x-~ (P+G*])(x) f CPn x-~ P(x)dx
k =0 Ak n A, n

f ( kn). •xsgn qJn x-- (P+G*/)(x)dx=O,
Ak n

(4.3 )
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for any P E E(G), and

i=O, 1, ... , 2n-1. (4.4 )

It is easy to prove that (4.3) and (4.4) are also valid if /1, j, and Pare
replaced by An' h,,, and 0, respectively. Set

k = 0, 1, ..., 2n - 1, and

2n- I ( kTr)
F(x)= L: CkC{Jn x-- .

k~O n

From (4.3), (4.4), and the analogous formulas for hn , )"" and 0, it follows
that

(4.5 )VPEE(G).r+ 21t

F(x)P(x)dx=O,
fJ

ffJ+ h 1. -
fJ F(x)(G * fJ(x) dx = 2n [).~( -1 V-llfll~- P/1q lajlP -I sgn aJ, (4.6)

i = 0, I, ..., 2n - l.
If An> /1, then from (4.6) and 11]11 q - P::::; 1, it follows that

(4.7)

2n=5,- (U;+2n F(X)(G*JJ(X)dX);:~)

= S,~ (((i: l)nln f(y)(G* * F)(y) dyr~~ ').
where G*(·) := G( - '), and 5,~ (Y) denotes the cyclic variation of Y E R 211
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(d. [12, p. 59]). By (4.7) and the non-negativeness of fi' there exist tiE

(in/n, ((i + I) n )/n) such that

[(G* * F)(tj)][(G* * F)(t i + d] < 0, i = 0, I, ..., 2n - I,

where t2" = to + 2n. The above facts yield that dis( G* * F) < 3n/n <
n/(21l(Q)-I)v(Q). It follows from (4.5) that FEE.L(G)=E.L(G*). From
Lemma 2.1 and the remark in Section 2, we have

(Here we have used the relation sgn(a - b) = lal q - I sgn a -Ibl q - I sgn b.)
Repeating the above procedure, we have dis( - P+ G * (h" - I)) <

n/( 21l( Q) - I ) v( Q). Therefore,

S,( - P+ G * (h" - I)) ~ S,(h" - I)·

From the non-negativeness of qJ" we obtain

2n = S,- ((f qJ" (x - in) (- p+ G * (h" - I)(x)) dX)2"-I)
d, n ,~O

~ SA -P+ G * (h,,- I)) ~ S,(h,,- j)

=Sc (I (( - I Y- tU j) ~ 2n - 2.
,#m

This contradiction yields A" ~ II. On the other hand, by putting P = 0,
j = h" we get A" ~ II. Thus the lemma is proved.

By Lemma 4.1 and the method used in proving Lemma 3.4 of [2], we
can prove

LEMMA 4.2. If n > N(Q) and I < p ~ q < 00, then

d2n (p, q) ~ )'n'

LEMMA 4.3. Assume n> N(Q) and 1< p ~ q < 00. Then

d 2n (p, q) ~ A"(q', p', G*),

where (l/p) + (I/p') = (l/q) + (l/q') = 1.
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Proof Let U2"=span{u j };:,SLq ,, We are going to prove the
following inequality:

Obviously, we may suppose that the left hand side of the above inequality
is finite, Therefore, if P E E( G) satisfies P.l U 2,,, then P = 0, which
means that the rank of the matrix ((u j , gJ);";~,i~' is v, where (f, g)=
S6" f(x) g(x) dx, II = dim E(G) and {gl};~' is a basis of E(G), Without loss
of generality, we may suppose that

.'
(u;, P) = L ail(up P),

i~ I

'r/PEE(G), i = v + I, "', 2n.

Denote v;(y)=j6nG(x-y)u j (x)dx, and

j= 1, "', v,

.'
Wi = Vi - L ajjv;,

j= I

It is easy to prove that

j = I' + 1, "" 2n,

f(x) = P(x) + (G * h)(x) .1 U2"

if and only if h .1 W 2n := span {w j }J: I' Therefore,

sup{llfllqlfE Wp(Q(D)),f.l U2,,}

= sup {f:" f(x) g(x) dxlfE Wp(Q(D)), f .1 u2,,, Ilgll q ~ I}
~sup {J:n h(y) (P(X)+ f: n

G(x- y) g(x) dX) dylh.l W 2",

IIhllp~ 1, PEE(G*), gEE.L(G*), Ilgllq~ I}
~ d2,,( Wq,(Q( - D)), L p ') ~ A,,(q', p', G*),

So we have proved the lemma,

Proof of Theorem 4,1, From Lemma 4,1 and
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it follows that b2,,_I(P, p) ~ A". By Theorem 3.3, Lemma 4.2 and the
relations among the n-widths, we obtain

A,,(p, p, G)::;; d2,,(p, p)::;; (!J2,,(p, p)::;; }'II(P, P, G),

A,,(p', p', G*)::;;d 211 (p, p)::;;b 211(p, pl.

By Lemma 3.5 in [2], we get

},,,(p', p', G*) = }'II(P, p, G).

(4.8 )

Hence all the inequalities of (4.8) turn into equalities. Therefore, both (I)
and (3) hold. Because of the explanations for (2) in [8] or [12], (2) also
holds. Thus the proof of the theorem is complete.

COROLLARY 4.4. If n > N(Q), then

2 1
d2,,(2, 2)=d "(2, 2) = b211(2, 2)= IQ(in)l'

Proof We only need to show that for n > N(Q)

Notice that

i=J=I.

(4.9 )

, I'(Q)

IQ(iu)1 = n JU2+AJ n Ja7+2aJb} + (u2-bJ)2
j~1 j~l

is a strictly increasing function of u for u E (v( Q), CfJ ).

By the definition of D".2, we know that for any hE D".2 we have

hit) = L C"ke-i"kt,

k E Z, k .. O

Therefore (cf. [6, p. 456, (1.4)]),

C"k = C.·"k'

(G * h)(t)= L ~e-i"kt.
kEZ.k .. O Q(mk)

It follows from Parseval's formula that

(
I

e 1
2)1/2 ~ ( )1/2

IIG * h1l 2 ::;;~ L Q(~kk) ::;; IQ(, k)1 L Icllkl
2

kEZ.k"O m m kEZ.k"O

IIhll 2 1
---,<,--
-IQ(in)1 "IQ(in)I'
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On the other hand, if we take hll(xl=(I/filsinnxED II • 2 , then
IIG * hll 1l 2 = 1/IQUnll. Therefore (4.9) holds. The proof is complete.

Remark. It had been derived in [10J that d 211(2,2)=IQ(inll I for
sufficiently large n by a method different from that in this paper.
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